skip to main content


Search for: All records

Creators/Authors contains: "Xu, Fei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Meta-analyses have not shown emotions to be significant predictors of deception. Criticisms of this conclusion argued that individuals must be engaged with each other in higher stake situations for such emotions to manifest, and that these emotions must be evaluated in their verbal context (Frank and Svetieva in J Appl Res Memory Cognit 1:131–133, 10.1016/j.jarmac.2012.04.006, 2012). This study examined behavioral synchrony as a marker of engagement in higher stakes truthful and deceptive interactions, and then compared the differences in facial expressions of fear, contempt, disgust, anger, and sadness not consistent with the verbal content. Forty-eight pairs of participants were randomly assigned to interviewer and interviewee, and the interviewee was assigned to steal either a watch or a ring and to lie about the item they stole, and tell the truth about the other, under conditions of higher stakes of up to $30 rewards for successful deception, and $0 plus having to write a 15-min essay for unsuccessful deception. The interviews were coded for expression of emotions using EMFACS (Friesen and Ekman in EMFACS-7; emotional facial action coding system, 1984). Synchrony was demonstrated by the pairs of participants expressing overlapping instances of happiness (AU6 + 12). A 3 (low, moderate, high synchrony) × 2 (truth, lie) mixed-design ANOVA found that negative facial expressions of emotion were a significant predictor of deception, but only when they were not consistent with the verbal content, in the moderate and high synchrony conditions. This finding is consistent with data and theorizing that shows that with higher stakes, or with higher engagement, emotions can be a predictor of deception. 
    more » « less
    Free, publicly-accessible full text available December 16, 2024
  2. Abstract Strong gravitational lensing of gravitational wave sources offers a novel probe of both the lens galaxy and the binary source population. In particular, the strong lensing event rate and the time-delay distribution of multiply imaged gravitational-wave binary coalescence events can be used to constrain the mass distribution of the lenses as well as the intrinsic properties of the source population. We calculate the strong lensing event rate for a range of second- (2G) and third-generation (3G) detectors, including Advanced LIGO/Virgo, A+, Einstein Telescope (ET), and Cosmic Explorer (CE). For 3G detectors, we find that ∼0.1% of observed events are expected to be strongly lensed. We predict detections of ∼1 lensing pair per year with A+, and ∼50 pairs per year with ET/CE. These rates are highly sensitive to the characteristic galaxy velocity dispersion, σ * , implying that observations of the rates will be a sensitive probe of lens properties. We explore using the time-delay distribution between multiply imaged gravitational-wave sources to constrain properties of the lenses. We find that 3G detectors would constrain σ * to ∼21% after 5 yr. Finally, we show that the presence or absence of strong lensing within the detected population provides useful insights into the source redshift and mass distribution out to redshifts beyond the peak of the star formation rate, which can be used to constrain formation channels and their relation to the star formation rate and delay-time distributions for these systems. 
    more » « less
  3. Abstract. End-member mixing analysis (EMMA) is a method of interpreting stream water chemistry variations and is widely used for chemical hydrograph separation. It is based on the assumption that stream water is a conservative mixture of varying contributions from well-characterized source solutions (end-members). These end-members are typically identified by collecting samples of potential end-member source waters from within the watershed and comparing these to the observations. Here we introduce a complementary data-driven method (convex hull end-member mixing analysis – CHEMMA) to infer the end-member compositions and their associated uncertainties from the stream water observations alone. The method involves two steps. The first uses convex hull nonnegative matrix factorization (CH-NMF) to infer possible end-member compositions by searching for a simplex that optimally encloses the stream water observations. The second step uses constrained K-means clustering (COP-KMEANS) to classify the results from repeated applications of CH-NMF and analyzes the uncertainty associated with the algorithm. In an example application utilizing the 1986 to 1988 Panola Mountain Research Watershed dataset, CHEMMA is able to robustly reproduce the three field-measured end-members found in previous research using only the stream water chemical observations. CHEMMA also suggests that a fourth and a fifth end-member can be (less robustly) identified. We examine uncertainties in end-member identification arising from non-uniqueness, which is related to the data structure, of the CH-NMF solutions, and from the number of samples using both real and synthetic data. The results suggest that the mixing space can be identified robustly when the dataset includes samples that contain extremely small contributions of one end-member, i.e., samples containing extremely large contributions from one end-member are not necessary but do reduce uncertainty about the end-member composition. 
    more » « less
  4. This research work explores different machine learning techniques for recognizing the existence of rapport between two people engaged in a conversation, based on their facial expressions. First using artificially generated pairs of correlated data signals, a coupled gated recurrent unit (cGRU) neural network is developed to measure the extent of similarity between the temporal evolution of pairs of time-series signals. By pre-selecting their covariance values (between 0.1 and 1.0), pairs of coupled sequences are generated. Using the developed cGRU architecture, this covariance between the signals is successfully recovered. Using this and various other coupled architectures, tests for rapport (measured by the extent of mirroring and mimicking of behaviors) are conducted on real-life datasets. On fifty-nine (N = 59) pairs of interactants in an interview setting, a transformer based coupled architecture performs the best in determining the existence of rapport. To test for generalization, the models were applied on never-been-seen data collected 14 years prior, also to predict the existence of rapport. The coupled transformer model again performed the best for this transfer learning task, determining which pairs of interactants had rapport and which did not. The experiments and results demonstrate the advantages of coupled architectures for predicting an interactional process such as rapport, even in the presence of limited data. 
    more » « less
  5. The salient pay-per-use nature of serverless computing has driven its continuous penetration as an alternative computing paradigm for various workloads. Yet, challenges arise and remain open when shifting machine learning workloads to the serverless environment. Specifically, the restriction on the deployment size over serverless platforms combining with the complexity of neural network models makes it difficult to deploy large models in a single serverless function. In this paper, we aim to fully exploit the advantages of the serverless computing paradigm for machine learning workloads targeting at mitigating management and overall cost while meeting the response-time Service Level Objective (SLO). We design and implement AMPS-Inf, an autonomous framework customized for model inferencing in serverless computing. Driven by the cost-efficiency and timely-response, our proposed AMPS-Inf automatically generates the optimal execution and resource provisioning plans for inference workloads. The core of AMPS-Inf relies on the formulation and solution of a Mixed-Integer Quadratic Programming problem for model partitioning and resource provisioning with the objective of minimizing cost without violating response time SLO. We deploy AMPS-Inf on the AWS Lambda platform, evaluate with the state-of-the-art pre-trained models in Keras including ResNet50, Inception-V3 and Xception, and compare with Amazon SageMaker and three baselines. Experimental results demonstrate that AMPSInf achieves up to 98% cost saving without degrading response time performance. 
    more » « less